jueves, 28 de agosto de 2014

Forma del Universo








La forma del Universo es una cuestión muy importante para la Cosmología, ya que el destino final del propio Universo depende de la forma que tenga. Sin embargo, aún hoy en día es imposible de averiguar.

Forma del Universo
La forma del Universo depende de su densidad, es decir, de la cantidad de masa y energía que posee. El problema es que no sabemos qué tamaño tiene el Universo ni cuánta energía y materia hay en total. Así que tampoco podemos calcular su densidad.

Las teorías de Einstein plantean tres posibles formas: cerrado, abierto, o plano. Aunque la forma del Universo continúa siendo un enigma, la mayoría de científicos opina que es casi plano.




El Universo puede tener tres posibles formas:

Universo cerrado: si hay demasiada materia y energía, la densidad será muy alta. El Universo se curvará hacia dentro y tendrá forma de esfera. Será un Universo finito. La gravedad será más fuerte que la expansión, toda la materia acabará agrupándose y el Universo colapsará. Este final se denomina Big Crunch.En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura,como sugieren los hallazgos recientes, entonces la expansión será grande.

Universo abierto: si la densidad de materia y energía es muy baja, el Universo se curvará hacia afuera. Tendrá la forma de una silla de montar. Será un Universo infinito, en infinita expansión. La gravedad será tan débil que no podrá haber estrellas, ni planetas, ni siquiera átomos. La materia se separará y se desintegrará hasta quedar reducida a partículas elementales.Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica"  Big Freeze", dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.

Universo plano: si la cantidad de materia y energía es la adecuada, la densidad será equilibrada. Es lo que se llama densidad crítica. Entonces el Universo será plano. La gravedad y la expansión estarán en equilibrio. El Universo se expandirá, pero cada vez más despacio.

Hoy se cree que el Universo es casi plano, pero aún existen muchas dudas, ya que está demostrado que el Universo se expande cada vez más rápidamente, y esto parece una contradicción con la teoría.


Materiales y radiación






En el Universo hay materiales dispersos, dentro y fuera de las galaxias. Hablamos de la materia interestelar, la luz, la radiación de fondo y la materia oscura.



Materia interestelar
Está formada los gases y partículas de polvo que hay entre las estrellas y las galaxias. La mayor parte no es visible, pero se puede detectar a través de sus efectos gravitatorios y de sus emisiones electromagnéticas.

Está formada, sobre todo, por hidrógeno, pero también hay pequeñas cantidades de helio, nitrógeno, oxígeno, carbono y moléculas simples de agua, alcoholes y amoníaco.

Astro-bio-química

Un átomo de hidrógeno y uno de oxígeno pueden combinarse para formar un grupo OH (hidroxílico), muy activo, capaz de unirse con casi cualquier material. Si se encuentra con un átomo de hidrógeno, forma una molécula de agua.

A partir de la década de 1970 se han localizado moléculas cada vez más complejas, formadas por decenas de átomos.

Algunas podrían, en condiciones favorables, formar materia orgánica, que es la base de los organismos vivos.

La luz, ¿ondas o partículas?

La luz, ¿ondas o partículas?
Las ondas de luz, como las de los rayos X, no se pueden emitir de una en una, sino sólo en paquetes llamados "cuantos". La ciencia que lo estudia es la mecánica cuántica.

Estos tipos de radiación de alta frecuencia, según cómo se observan, se comportan como partículas y, al mismo tiempo, como ondas. Las partículas de la luz son los fotones. No tienen masa y viajan a cerca de 300.000 km/s.

La radiación cósmica de fondo
En 1965 se encontró la prueba "tangible" del Big Bang. Comprobando un detector de microondas muy sensible, dos científicos descubrieron una radiación estraña que provenía por igual de todos los puntos del espacio.

Otros teóricos ya habían predicho que se habría de observar, procediendo de todo el universo, un "resplandor" testimonio del Big Bang, y que esta luz, debido a la expansión del Universo, se presentaría en forma de microondas.

Materia oscura
Se cree que la materia oscura es un material que no emite ninguna radiación electromagnética. Su existencia se basa en consideraciones teóricas y es, por ahora, uno de los principales problemas que tiene planteados la astrofísica.

Estudiando las fuerzas en el Universo, se calcula que la materia total es mucha más que la detectada por nuestros instrumentos. Como no sabemos nada de ella, la llamamos materia oscura.


miércoles, 27 de agosto de 2014

LA EXPANSIÓN DEL UNIVERSO






La «expansión acelerada del universo» o «universo en expansión acelerada» son términos con los que se designa el hecho descubierto en los años 1990 de que el universo se expande a una velocidad cada vez mayor. Esto hecho fue un descubrimiento no esperado, ya que hasta ese descubrimiento se pensaba que, si bien el universo ciertamente está en expansión, su ritmo iba decreciendo por efecto de la atracción mutua entre galaxias distantes.
El descubrimiento de la expansión del Universo empieza en 1912, con los trabajos del astrónomo norteamericano Vesto M. Slipher. Mientras estudiaba los espectros de las galaxias observó que, excepto en las más próximas, las líneas del espectro se desplazan hacia el rojo.

Esto significa que la mayoría de las galaxias se alejan de la Vía Láctea ya que, corrigiendo este efecto en los espectros de las galaxias, se demuestra que las estrellas que las integran están compuestas de elementos químicos conocidos. Este desplazamiento al rojo se debe al efecto Doppler.

Si medimos el corrimiento del espectro de una estrella, podemos saber si se acerca o se aleja de nosotros. En la mayoría este desplazamiento es hacia el rojo, lo que indica que el foco de la radiación se aleja. Esto es interpretado como una confirmación de la expansión del Universo.

En principio parece que las galaxias se alejan de la Vía Láctea en todas direcciones, dando la sensación de que nuestra galaxia es el centro del Universo. Este efecto es consecuencia de la forma en que se expande el Universo. Es como si la Vía Láctea y el resto de galaxias fuesen puntos situados sobre la superficie de un globo. Al inflar el globo, todos los puntos se alejan de nosotros. Si cambiásemos nuestra posición a cualquiera de los otros puntos y realizásemos la misma operación, observaríamos exactamente lo mismo.

La Ley de Hubble

La Ley de Hubble
El astrónomo estadounidense Edwin Powell Hubble relacionó, en 1929, el desplazamiento hacia el rojo observado en los espectros de las galaxias con la expansión del Universo. Sugirió que este desplazamiento hacia el rojo, llamado desplazamiento hacia el rojo cosmológico, es provocado por el efecto Doppler y, como consecuencia, indica la velocidad de retroceso de las galaxias.

Hubble también observó que la velocidad de recesión de las galaxias era mayor cuanto más lejos se encontraban. Este descubrimiento le llevó a enunciar su ley de la velocidad de recesión de las galaxias, conocida como la "ley de Hubble", la cual establece que la velocidad de una galaxia es proporcional a su distancia.

La constante de Hubble o de proporcionalidad es el cociente entre la distancia de una galaxia a la Tierra y la velocidad con que se aleja de ella. Se calcula que esa constante está entre los 50 y 100 Km/s por megaparsec.



LA GRAVEDAD




La gravedad es la fuerza de atracción entre objectos.
En el Universo toda la materia se mueve a causa de ésta y otras fuerzas.
La gravedad depende de la masa de los objectos y de la distancia que los separa. Cuanto más masa tienen y más cerca están, mayor es la fuerza. Cuando se separan el doble, la fuerza se reduce a un cuarto.

La gravedad actúa como si toda la masa de un cuerpo se concentrase en un único punto, el centro de gravedad. La zona esférica alrededor de un cuerpo donde actúa su gravedad es el campo gravitacional.

La ley de la gravitación universal fue formulada por el físico británico Isaac Newton en el año 1684.

Si dejáramos dos cuerpos con masa y en reposo, sin que actuase ninguna otra fuerza salvo su atracción, inevitablemente, chocarían. Pero en el Universo hay muchas "gravedades", actúan otras fuerzas y los cuerpos están en movimiento.
Colapso
Un colapso gravitacional es cuando un cuerpo se hace más pequeño como resultado de su propia gravedad, por ejemplo, una nube de gas para formar una estrella, o una estrella para formar un agujero negro. Se rompen los átomos y el edificio se desmorona.

Los átomos son cajas vacías donde una fuerza mantiene la estructura. Pero, si la gravedad supera esta fuerza, la estructura central no aguanta y la materia inicia una reacción en cadena.

La densidad aumenta el cuerpo se hace pequeño sin perder masa, el campo gravitatorio se intensifica y se produce el colapso.

Fuerzas fundamentales del Universo

Hay cuatro fuerzas fundamentales, que determinan todas las formas de interacción de la materia:

- interacciones nucleares fuertes,
- interacciones nucleares débiles,
- electromagnetismo y
- gravitación.

La gravedad es la más débil de las cuatro y la única que sólo actúa en un sentido. Los científicos especulan sobre si existe la complementaria.

Movimientos
Las estrellas, las galaxias y todo el Universo se mueven. Otra cosa es detectar el movimiento de algunos cuerpos, sobre todo, de los más lejanos.
Se llama órbita la trayectoria de un objeto que gira alrededor de otro.
El periodo orbital es el tiempo que el objeto tarda en completar una órbita. Parece que todos los objetos, en el espacio, orbitan alrededor de otros con más masa.


via lactea

Via Lactea  




La Galaxia de la Vía Láctea o simplemente Vía Láctea es la galaxia espiral en la que se encuentra el Sistema Solar y, por ende, la Tierra. Según las observaciones, posee una masa de 1012 masas solares y es una espiral barrada; con un diámetro medio de unos 100.000 años luz, estos son aproximadamente 1 trillón de km, se calcula que contiene entre 200.000 millones y 400.000 millones de estrellas. La distancia desde el Sol hasta el centro de la galaxia es de alrededor de 27.700 años luz (8.500 pc, es decir, el 55 por ciento del radio total galáctico). La Vía Láctea forma parte de un conjunto de unas cuarenta galaxias llamado Grupo Local, y es la segunda más grande y brillante tras la Galaxia de Andrómeda,aunque puede ser la más masiva, al mostrar un estudio reciente que nuestra galaxia es un 50 % más masiva de lo que se creía anteriormente. 

El nombre Vía Láctea proviene de la mitología griega y en latín significa camino de leche.
Esa es, en efecto, la apariencia de la banda de luz que rodea el firmamento, y así lo afirma la mitología griega, explicando que se trata de leche derramada del pecho de la diosa Hera, (Juno para los romanos). (Rubens representó la leyenda en su obra El nacimiento de la Vía Láctea). Sin embargo, ya en la Antigua Grecia un astrónomo sugirió que aquel haz blanco en el cielo era en realidad un conglomerado de muchísimas estrellas. Se trata de Demócrito (460 a. C. - 370 a. C.), quien sostuvo que dichas estrellas eran demasiado tenues individualmente para ser reconocidas a simple vista. Su idea, no obstante, no halló respaldo, y tan sólo hacia el año 1609 d. C., el astrónomo Italiano Galileo Galilei haría uso del telescopio para observar el cielo y constatar que Demócrito estaba en lo cierto, ya que adonde quiera que mirase, aquél se encontraba lleno de estrellas.
No podemos ver el brillante centro porque se interponen materiales opacos, polvo cósmico y gases fríos, que no dejan pasar la luz. Se cree que contiene un poderoso agujero negro.
La Vía Láctea tiene forma de lente convexa. El núcleo tiene una zona central de forma elíptica y unos  8.000 años luz de diámetro. Las estrellas del núcleo están más agrupadas que las de los brazos. A su alrededor hay una nube de hidrógeno, algunas estrellas y cúmulos estelares.
La Vía Láctea contiene tanto estrellas de las llamadas , estrellas blancas, azules  brillantes, como , gigantes rojas.
La región central de la Vía Láctea y el halo están compuestos por estrellas  gigantes rojas. La mayor parte de la región se oculta tras nubes de polvo que impiden la observación visual. La radiación de la región central se ha registrado por medio de mecanismos como células fotoeléctricas, filtros infrarrojos y radiotelescopios. Estos estudios indican la presencia de objetos compactos cerca del centro, posiblemente restos de estrellas o un enorme agujero negro.
El Sistema Solar está en uno de los brazos de la espiral, a unos 30.000 años luz del centro y unos 20.000 del extremo. Cada 225 millones de años el Sistema Solar completa un giro alrededor del centro de la galaxia. Se mueve a unos 270 km. por segundo.
Para un observador terrestre, el disco de la Galaxia aparece como una banda débilmente luminosa que se puede observar de noche extendiéndose a través del cielo, sobre todo en las noches de verano claras y sin luna. 
















Fotografia tomada desde el telescopio espacial Kepler


Recreación artística desde el telescopio espacial Hubble de la Vía Láctea,
en diferentes etapas de desarrollo en un lapso de tiempo de 11.000 millones de años,
con su aspecto actual, (foto de arriba) y durante su periodo de formación (foto de abajo).



El halo es una estructura esferoidal que envuelve la galaxia.

 En el halo la concentración de estrellas es muy baja y apenas tiene nubes de gas, por lo que carece de regiones con formación estelar.
En cambio, es en el halo donde se encuentran la mayor parte de los cúmulos globulares. Estas formaciones antiguas son reliquias de la formación galáctica. Estas agrupaciones de estrellas se debieron de formar cuando la galaxia era aún una gran nube de gas que colapsaba y se iba aplanando cada vez más. Otra característica del halo es la presencia de gran cantidad de materia oscura. Su existencia se dedujo a partir de anomalías en la rotación galáctica. Los objetos contenidos en el halo rotan con una componente perpendicular al plano muy fuerte, cruzando en muchos casos el disco galáctico. De hecho, es posible encontrar estrellas u otros cuerpos del halo en el disco. Su procedencia se delata cuando se analiza su velocidad y trayectoria, así como su metalicidad. Y es que los cuerpos del halo presentan una componente perpendicular al plano muy acusada, además del hecho de que se trata de cuerpos que se formaron antes que los del disco. Sus órbitas los llevan, pues, a cruzar periódicamente el disco. También es muy probable que una estrella de población II (pobre en metales) pertenezca al halo, pues éstas son más antiguas que las de población I (ricas en metales) y el halo, como ya se ha dicho, es una estructura antigua.





  El disco se compone principalmente de estrellas jóvenes de población I. Es la parte de la galaxia que más gas contiene y es en él donde aún se dan procesos de formación estelar. Lo más característico del disco son los brazos espirales, que son ocho: dos brazos principales Escudo-Centauro y Perseo, así como dos secundarios -Sagitario y Escuadra, en vez de cuatro brazos similares entre sí, como se pensaba antes.


El bulbo o núcleo galáctico se sitúa en el centro. Es la zona de la galaxia con mayor densidad de estrellas.
Sin embargo, a nivel local se pueden encontrar algunos cúmulos globulares con densidades superiores. El bulbo tiene una forma esferoidal achatada y gira como un sólido rígido. También al parecer, en nuestro centro galáctico, hay un gran agujero negro de unas 2,6 millones de masas solares que los astrónomos denominaron Sagittarius A, o Sagitario A*. Su detección fue posible a partir de la observación de un grupo de estrellas que giraban en torno a un punto oscuro a más de 1.500 km/s.





la radiacion cosmica






Es la energía que emiten los cuerpos celestes y viaja por el espacio en forma de ondas. Se desplaza a la velocidad de la luz. La radiación electromagnética es, junto con la materia, el otro gran componente del Cosmos. Comprende las ondas de radio, las microondas, las ondas infrarrojas (calor), la luz visible, los rayos ultravioletas, los rayos X y los rayos gamma.




Nuestra atmósfera nos protege de la radiación electromagnética de más alta energía: los rayos gamma, los rayos X y parte de los rayos ultravioleta. De no ser así, la vida en la Tierra no sería posible.

 Los rayos cósmicos son partículas subatómicas procedentes del espacio exterior cuya energía, debido a su gran velocidad, es muy elevada: cercana a la velocidad de la luz. Se descubrieron cuando se comprobó que la conductividad eléctrica de la atmósfera terrestre se debe a ionización causada por radiaciones de alta energía.
En el año 1911, Victor Franz Hess, físico austríaco, demostró que la ionización atmosférica aumenta proporcionalmente a la altitud. Concluyó que la radiación debía proceder del espacio exterior.
El descubrimiento de que la intensidad de radiación depende de la altitud indica que las partículas integrantes de la radiación están eléctricamente cargadas y que las desvía el campo magnético terrestre.
Millikan acuñó la expresión «rayos cósmicos». Contrariamente a Hess, planteaba que eran de origen extraterrestre. Años más tarde apoyó la teoría de este investigador.

Detector de neutrinos
Los rayos cósmicos o radiación corpuscular no son ondas, sino partículas cargadas de energía, como los neutrinos. Las estrellas emiten lluvias de partículas que atraviesan el espacio a gran velocidad. Los rayos cósmicos trasportan la carga de energía más alta que se conoce en el Universo.

Nuestro Sol emite rayos cósmicos que llegan hasta la Tierra. El campo magnético de la Tierra desvía la mayoría. Pero son tan potentes que una pequeña parte consigue entrar en la atmósfera y atravesarla. A veces, las partículas cargadas pasan a las capas altas de la atmósfera por los Polos, y forman las auroras.





agujeros de gusano

  


En física, un agujero de gusano, también conocido como puente de Einstein-Rosen y en algunas traducciones españolas «agujero de lombriz», es una hipotética característica topológica de un espacio-tiempo, descrita por las ecuaciones de la relatividad general, consistente esencialmente en un «atajo» a través del espacio y el tiempo. Un agujero de gusano tiene por lo menos dos extremos, conectados a una única «garganta», pudiendo la materia 'desplazarse' de un extremo a otro pasando a través de ésta. Hasta la fecha no se ha encontrado ninguna evidencia de que el espacio-tiempo conocido contenga estructuras de este tipo, por lo que en la actualidad es sólo una posibilidad teórica.
 El primer científico en advertir de la existencia de agujeros de gusano fue
Ludwig Flamm en 1916. En este sentido la hipótesis del agujero de gusano es una actualización de la decimonónica teoría de una cuarta dimensión espacial que suponía -por ejemplo-, dado un cuerpo toroidal en el que se podían encontrar las tres dimensiones espaciales comúnmente perceptibles, una cuarta dimensión espacial que abreviara las distancias, y así los tiempos de viaje. Esta noción inicial fue plasmada más científicamente en 1921 por el matemático Hermann Weyl en conexión con sus análisis de la masa en términos de la energía de un campo electromagnético a partir de la teoría relativista de Albert Einstein publicada en 1916.

Un agujero de gusano es un túnel que conecta dos puntos del espacio-tiempo, o dos Universos paralelos. Nunca se ha visto uno y no está demostrado que existan, aunque matemáticamente son posibles.

Se les llama así porque se asemejan a un gusano que atraviesa una manzana por dentro para llegar al otro extremo, en vez de recorrerla por fuera. Así, los agujeros de gusano son atajos en el tejido del espacio-tiempo. Permiten unir dos puntos muy distantes y llegar más rápidamente que si se atravesara el Universo a la velocidad de la luz.

Según la teoría de la relatividad general de Einstein, los agujeros de gusano pueden existir. Tienen una entrada y una salida en puntos distintos del espacio o del tiempo. El túnel que los conecta está en el hiperespacio, que es una dimensión producida por una distorsión del tiempo y la gravedad.

Einstein y Rosen plantearon esta teoría al estudiar lo que ocurría en el interior de un agujero negro. Por eso se llaman también Puente de Einstein-Rosen.

Puente Einstein-Rosen
Hay dos clases de agujeros de gusano:

- Intrauniverso: conectan dos puntos alejados del Cosmos.
- Interuniverso o agujeros de Schwarzschild: conectan dos Universos distintos.

¿Se puede viajar en el tiempo?

Una cosa es que existan los agujeros de gusano y otra muy distinta que puedan utilizarse para viajar en el espacio y el tiempo.
Según la relatividad general, es posible viajar al futuro, pero no al pasado. Si se pudiera viajar al pasado, podríamos alterar la Historia, por ejemplo, haciendo que nunca naciéramos. Sería algo imposible.

La novela" contact" (Contacto), de Carl Sagan proponía un viaje a través de un agujero de gusano. Esto hizo que mucho lo creyeran posible. Pero es sólo ciencia ficción. Los científicos creen que un agujero de gusano tiene una vida muy corta. Se abre y vuelve a cerrarse rápidamente. La materia quedaría atrapada en él o, aunque consiguiera salir por el otro extremo, no podría volver. Evidentemente, tampoco podríamos elegir adónde nos llevaría.





LA MATERIA DEL UNIVERSO





Materia del universo en expansioon


Materia es todo aquello que tiene localización espacial, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.Toda la materia se compone de partículas. Son como pequeñísimas piezas que se unen para formar todo lo que vemos. Aunque también forman otro tipo de materia que no podemos ver, la materia oscura. De hecho, la mayor parte de la materia que compone el Universo es materia oscura.

Todo lo que tiene masa, por pequeña que sea, emite gravedad. Incluso nosotros mismos. En el Cosmos, la materia se atrae por esa gravedad. Se agrupa y forma desde las pequeñas moléculas hasta los planetas, las estrellas y los grandes cúmulos galácticos. La gravedad mantiene unida la materia. Aún así, la mayor parte de la materia no se concentra en las galaxias, sino en los inmensos espacios intergalácticos.

La materia visible

Materia visible
La parte de la materia que podemos ver es sólo el 5% de la composición del Universo. La materia visible se llama materia ordinaria o materia bariónica.

La materia ordinaria está formada por átomos. Puede estar en cuatro estados: sólido, líquido, gasesoso y plasma. Pasa de un estado a otro al ganar o perder calor. La mayor parte de la materia visible del Universo está en estado de plasma, ya que es el que forma las estrellas.


Materia oscura
En el Universo hay otro tipo de materia, que no podemos ver. Es la materia oscura o invisible. La cuarta parte del Universo conocido es materia oscura, aunque algunas fuentes calculan que lo es hasta un 80%. Esto significa que hay mucha más cantidad de materia oscura que de materia visible.

La materia oscura no emite ni refleja ningún tipo de luz. No desprende ningún tipo de radiación, ni visible ni invisible. Por eso no podemos verla. Pero sabemos que existe porque sí emite gravedad, y nuestra tecnología la detecta. Su gravedad es tan grande que mueve los grandes cúmulos galácticos.
La composición de la materia oscura sigue siendo un misterio. Aunque se cree que podría estar formada por neutrinos y otras partículas aún desconocidas.

Ley de la conservación de la materia

Como hecho científico la idea de que la masa se conserva se remonta al químico Lavoisier,
el científico francés considerado padre de la Química moderna que midió cuidadosamente la masa de las sustancias antes y después de intervenir en una reacción química, y llegó a la conclusión de que la materia, medida por la masa, no se crea ni destruye, sino que sólo se transforma en el curso de las reacciones. Sus conclusiones se resumen en el siguiente enunciado: En una reacción química, la materia no se crea ni se destruye, solo se transforma. El mismo principio fue descubierto antes por Mijaíl Lomonosov, de manera que es a veces citado como ley de Lomonosov-Lavoisier, más o menos en los siguientes términos: La masa de un sistema de sustancias es constante, con independencia de los procesos internos que puedan afectarle, es decir, "La suma de los productos, es igual a la suma de los reactivos, manteniéndose constante la masa". Sin embargo, tanto las técnicas modernas como el mejoramiento de la precisión de las medidas han permitido establecer que la ley de Lomonosov-Lavoisier, se cumple sólo aproximadamente.

Según los modelos físicos actuales, sólo aproximadamente el 5% de nuestro universo está formado por materia másica ordinaria. Se supone que una parte importante de esta masa sería materia bariónica formada por bariones y electrones, que sólo supondrían alrededor de 1/1850 de la masa de la materia bariónica. El resto de nuestro universo se compondría de materia oscura 23% y energía oscura 72%.






Universo observable



El límite del Universo Observable (también llamado distancia comóvil u horizonte cosmológico) es la distancia desde la Tierra que nos es posible observar gracias a la detección de las ondas electromagnéticas.
Utilizando el modelo cosmológico Lambda-CDM y los datos más recientes de la sonda WMAP se obtiene que el radio del Universo Observable es de 46,500’000,000 de Años Luz.
Incluso con la tecnología más avanzada, sólo alcanzamos a ver una pequeña parte del Universo. Se llama Universo observable, y es la parte del Cosmos cuya luz ha tenido tiempo de llegar hasta nosotros.

El Universo observable tiene forma de esfera, con la Tierra en su centro. Así que podemos ver la misma distancia en todas las direcciones.

El límite del Universo observable se llama horizonte de luz cósmica. Tiene un radio de 1,37 x 1026 m, un volumen de 1,09 x 1079 m3 y una masa de 9,27 x 1052 kg, por lo que la densidad masa-energía equivalente es de 8,46 x 10-27 kg/m3. La densidad media de sus constituyentes primarios es de un 68,3 % de energía oscura, un 26,8 % de materia oscura fría y un 4,9% de materia ordinaria, según datos recogidos por la sonda Planck.
Así, la densidad de los átomos está en el orden del núcleo de hidrógeno sencillo para cada cuatro metros cúbicos.1 La naturaleza de la energía oscura y la materia oscura fría sigue siendo un misterio. Aunque se han propuesto diferentes candidatos para ambas cosas (como partículas y fuerzas ya existentes o nuevas, o modificaciones de la relatividad general) no existe confirmación experimental sobre ninguna de las propuestas.Los objetos situados en ese horizonte son los más lejanos que podemos ver. Su luz partió hacia nosotros casi desde el origen del Universo, hace 13.700 millones de años. Así que los vemos tal y como eran hace más de 13.000 millones de años. Por eso son tan importantes para conocer la evolución del Universo.

Pero, como el Universo se expande, en realidad esos objetos se hallan mucho más lejos.
Actualmente, están ya a 46.500 millones de años luz  en todas las direcciones desde la Tierra, así el Universo visible se puede considerar como una esfera perfecta con la Tierra en el centro y un diámetro de unos 93.000 millones de años luz/880.000 trillones de km (5.865 billones UA).2 Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del Universo visible, desde 13.700 hasta 180.000 millones de años luz. Aunque la edad del universo sea de 13.700 millones de años, la expansión producida debido al Big Bang hace que el universo más lejano observable se haya alejado mucho más que esa distancia, a pesar de haber recorrido menos de 13.700 millones de años luz 



Grandes telescopios de la NASA


Hubble         Luz visible,  ultravioleta  e  infrarroja cercana  
Chandra          Rayos X
Compton          Rayos Gamma
Spitzer        Infrarroja lejana

Para explorar todo el Universo observable, la NASA puso en órbita cuatro telescopios espaciales: Hubble, Chandra, Compton y Spitzer. Cada uno capta un tipo distinto de luz. Actualmente, el Compton ya no está operativo.

El Universo observable a simple vista

A simple vista
La parte del Universo que vemos a simple vista se llama esfera celeste. Es una esfera imaginaria, con la Tierra en el centro, donde se sitúan las constelaciones. Alcanza hasta los 2'5 millones de años luz.

Lo más lejano que puede verse es la vecina galaxia de Andrómeda, y las dos galaxias satélite de la Vía Láctea: la Pequeña y la Gran Nube de Magallanes. Todo lo demás, pertenece a nuestra galaxia, la Vía Láctea.



martes, 26 de agosto de 2014

¿Qué es el Universo?


Una de las preguntas que se hace el ser humano desde que empezó la evolución se refiere al mundo que nos rodea. A medida que aumentan los conocimientos, este mundo se va ampliando. La educación en Astronomía contribuye a un mejor conocimiento sobre el Universo. Los cursos sobre esta materia se imparten desde hace muchos siglos.
El universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan.
Observaciones astronómicas indican que el universo,entre 13 730 y 13 810 millones de años  y por lo menos 93.000 millones de años luz de extensión.
El evento que dio inicio al universo se denomina Big Bang. Se denomina Big-Bang a la singularidad que creó el universo. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y continúa haciéndolo.


El Universo ha sido un misterio hasta hace pocos años, de hecho, todavía lo es, aunque sabemos muchas cosas. Desde las explicaciones mitológicas o religiosas del pasado, hasta los actuales medios científicos y técnicos de que disponen los astrónomos, hay un gran salto qualitativo que se ha desarrollado, sobre todo, a partir de la segunda mitad del siglo XX.

Quedan muchísimas cosas por descubrir, pero es que el Universo es enorme, o nosotros demasiado pequeños. En todo caso, vamos a hacer un viaje, en lenguaje sencillo y sin alardes, por lo más significativo que nos ofrece el conocimiento actual del Universo.

El Universo abarca todo lo conocido: la materia, la energía, el espacio y el tiempo.

Las escalas en el universo son tan grandes que ni siquiera podemos imaginarlas. Para hacernos una idea, por cada grano de arena que hay en la Tierra, existen un millón de estrellas. Nuestra galaxia es sólo una entre cientos de miles de millones.
Aún así, toda la materia del Cosmos es sólo una pequeñísima parte del universo. El Universo es, sobre todo, un inmenso espacio casi vacío.
Es imposible conocer el tamaño exacto del Universo. Podría incluso ser infinito, aunque no parece probable. Al no saber qué forma tiene, tampoco podemos calcular su tamaño. Además, sigue expandiéndose. Sólo conocemos el tamaño del Universo visible desde la Tierra.


Tamaño del Universo visible

El límite del Universo visible desde la Tierra está a 46.500 millones de años luz, en todas las direcciones. Es decir, un diámetro de 93.000 millones de años luz. Un año luz son 9'46 billones de kilómetros. El cálculo es enorme, y aún así, es sólo la parte del Universo que podemos ver. Tras el Big Bang, el Universo se expandió tan rápidamente que parte de su luz aún no ha llegado hasta nosotros y, por eso, no podemos verlo.

Pero si el Universo sólo tiene 13.700 millones de años, ¿cómo puede haber objetos más alejados? No es posible que se hayan alejado más rápidamente que la velocidad de la luz. La respuesta es la inflación del Universo.



La inflación es el origen de todo: del propio espacio, del tiempo, y de todas las leyes físicas, incluido el límite de la velocidad de la luz. Todo se crea en la propia inflación. Así que la inflación del Universo no está sometida al límite de la velocidad de la luz. La inflación crea nuevo espacio entre los objetos y los aleja.
El hecho de que el universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de
Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.


El "corrimiento al rojo" es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto, como una galaxia  y la velocidad con la que éste se aleja. Si esta expansión ha sido continua a lo largo de la vida del universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual.





El universo





EL UNIVERSO








El Universo abarca todo lo conocido: la materia, la energía, el espacio y el tiempo. Las escalas en el universo son tan grandes que ni siquiera podemos imaginarlas. Para hacernos una idea, por cada grano de arena que hay en la Tierra, existen un millón de estrellas. Nuestra galaxia es sólo una entre cientos de miles de millones.
Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. Es muy grande, pero no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. En cuanto a la materia, el universo es, sobre todo, espacio vacío. Aún así, toda la materia del Cosmos es sólo una pequeñísima parte del universo. El Universo es, sobre todo, un inmenso espacio casi vacío.
El Universo contiene galaxias, cúmulos de galaxias y estructuras de mayor tamaño llamadas supercúmulos, además de materia intergaláctica. Todavía no sabemos con exactitud la magnitud del Universo, a pesar de la avanzada tecnología disponible en la actualidad.
La materia del Universo está ordenada. La fuerza de gravedad hace que la materia se agrupe formando estructuras. Desde las más simples, como las estrellas o los sistemas solares, hasta las gigantescas murallas de galaxias. Aún así, la expansión del Universo hace que las distintas estructuras se alejen unas de otras a gran velocidad.


Las estructuras más distantes son las más grandes y antiguas. Se formaron cuando el Universo aún era muy joven, y ayudan a conocer su evolución.
La materia no se distribuye de manera uniforme, sino que se concentra en lugares concretos: galaxias, estrellas, planetas ... Sin embargo, el 90% del Universo es una masa oscura, que no podemos observar.
Es imposible conocer el tamaño exacto del Universo. Podría incluso ser infinito, aunque no parece probable. Al no saber qué forma tiene, tampoco podemos calcular su tamaño. Además, sigue expandiéndose. Sólo conocemos el tamaño del Universo visible desde la Tierra.
Observaciones astronómicas indican que el universo tiene una edad de entre 13 730 y 13 810 millones de años y por lo menos 93.000 millones de años luz de extensión. El evento que dio inicio al universo se denomina Big Bang. Se denomina Big-Bang a la singularidad que creó el universo. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y continúa haciéndolo.


Debido a que, según la teoría de la relatividad especial, la materia no puede moverse a una velocidad superior a la velocidad de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de únicamente 13 mil millones de años; sin embargo, esta separación no entra en conflicto con la teoría de la relatividad general, ya que ésta sólo afecta al movimiento en el espacio, pero no al espacio mismo, que puede extenderse a un ritmo superior, no limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz si es el espacio entre ellas el que se dilata.


¿que es el universo ?

forma del universo

Universo observable

la materia del universo

agujeros de gusano

la radiacion cosmica

la radiación cosmica

La gravedad

la expansión del universo

Materiales y radiación










PULSAR O ESTRELLA DE NEUTRONES





Un púlsar es una estrella de neutrones que emite radiación periódica. Los púlsares poseen un intenso campo magnético que induce la emisión de estos pulsos de radiación electromagnética a intervalos regulares relacionados con el periodo de rotación del objeto.




La palabra Púlsar es un acrónimo de "pulsating radio source", fuente de radio pulsante. Se requieren relojes de extraordinaria precisión para detectar cambios de ritmo, y sólo en algunos casos.



Las estrellas de neutrones pueden girar sobre sí mismas hasta varios cientos de veces por segundo; un punto de su superficie puede estar moviéndose a velocidades de hasta 70 000 km/s. De hecho, las estrellas de neutrones que giran tan rápidamente se expanden en su ecuador debido a esta velocidad vertiginosa. Esto también implica que estas estrellas tengan un tamaño de unos pocos miles de metros, entre 10 y 20 kilómetros, ya que la fuerza centrífuga generada a esta velocidad es enorme y sólo el potente campo gravitatorio de una de estas estrellas (dada su enorme densidad) es capaz de evitar que se despedace.
Cada pulsar emite durante cerca de cuatro millones de años; después de este tiempo ha perdido tanta energía rotacional que no puede producir pulsos de radio detectables. Si conocemos la población total (1.000.000), y el tiempo de vida (4.000.000 de años), podemos deducir que un nuevo pulsar debe nacer cada cuatro años, asumiendo que la población permanece estable.El efecto combinado de la enorme densidad de estas estrellas con su intensísimo campo magnético generado por los protones y electrones de la superficie girando alrededor del centro a semejantes velocidades  causa que las partículas que se acercan a la estrella desde el exterior  , se aceleren a velocidades extremas y realicen espirales cerradísimas hacia los polos magnéticos de la estrella. Por ello, los polos magnéticos de una estrella de neutrones son lugares de actividad muy intensa. Emiten chorros de radiación en el rango del radio, rayos X o rayos gamma, como si fueran cañones de radiación electromagnética muy intensa y muy colimada.


Otros pulsares nacen en explosiones de supernovas. Si todos los pulsares fuesen nacidos en explosiones de supernovas, podríamos predecir que debería haber una supernova en nuestra Galaxia cada cuatro años, pero esto no está todavía claro.

Por razones aún no muy bien entendidas, los polos magnéticos de muchas estrellas de neutrones no están sobre el eje de rotación. El resultado es que los de los polos magnéticos no apuntan siempre en la misma dirección, sino que rotan con la estrella.

Es posible entonces que, mirando hacia un punto determinado del firmamento, recibamos un chorro de rayos X durante un instante. El chorro aparece cuando el polo magnético de la estrella mira hacia la Tierra, deja de apuntarnos una milésima de segundo después debido a la rotación, y aparece de nuevo cuando el mismo polo vuelve a apuntar hacia la Tierra. Lo que percibimos entonces desde ese punto del cielo son pulsos de radiación con un periodo muy exacto, que se repiten una y otra vez lo que se conoce como efecto faro cuando el chorro se orienta hacia nuestro planeta. Por eso, este tipo de estrellas de neutrones pulsantes se denominan púlsares, aunque esta denominación se aplica con más propiedad a otro grupo de estrellas variables. Si la estrella está orientada de manera adecuada, podemos detectarla y analizar su velocidad de rotación. El periodo de la pulsación de estos objetos lógicamente aumenta cuando disminuye su velocidad de rotación. A pesar de ello, algunos púlsares con periodos extremadamente constantes han sido utilizados para calibrar relojes de precisión.


La señal del primer púlsar detectado tenía un periodo de 1,33730113 s. Este tipo de señales únicamente se puede detectar con un radiotelescopio. De hecho, cuando en julio de 1967 Jocelyn Bell y Antony Hewish detectaron estas señales de radio de corta duración y extremadamente regulares, pensaron que podrían haber establecido contacto con una civilización extraterrestre, por lo que llamaron tentativamente a su fuente LGM "Little Green Men". Tras una rápida búsqueda se descubrieron 3 nuevos púlsares que emitían en radio a diferentes frecuencias, por lo que pronto se concluyó que estos objetos debían ser producto de fenómenos naturales. Anthony Hewish recibió en 1974 el Premio Nobel de Física por este descubrimiento y por el desarrollo de su modelo teórico.


Jocelyn Bell no recibió condecoración porque sólo era una estudiante de doctorado, aunque fuera ella quien advirtió la primera señal de radio.



Los púlsares de rayos x son sistemas de estrellas binarias que se componen de un púlsar y de una estrella normalmente joven de tipo O o B.
La estrella primaria emite viento estelar de su superficie y radiación, y éstos son atrapados por la estrella compañera que produce rayos x. El primer púlsar de rayos X conocido es la estrella compacta situada en el sistema Cen X-3.

Los pulsares se han encontrado principalmente en la Vía Láctea. Un escrutinio completo es imposible, ya que los pulsares débiles solo pueden ser detectados si están cercanos.

Los sondeos de radio ya han cubierto casi todo el cielo. Sus distancias pueden medirse a partir de un retardo en los tiempos de llegada de los pulsos observados en las radio frecuencias bajas; el retardo depende de la densidad de los electrones en el gas interestelar, y de la distancia recorrida.




Magnetares: son estrellas de neutrones hipermagnetizadas cuya existencia ha sido descubierta recientemente. Tendrían un campo magnético hasta mil veces más intenso que los pulsares y por lo tanto posiblemente no podrían emitir pulsos en ondas radio. También parecen ser más calientes que las estrellas de neutrones "normales" y tres de ellas producen estallidos de rayos gamma suaves, son los famosos ( "soft gamma repeaters" repetidores de rayos gamma suaves).


Extrapolando a partir de esta pequeña muestra de pulsares detectables, se estima que hay al menos 200.000 pulsares en toda nuestra Galaxia. Considerando aquellos pulsares cuyos haces de faro no barren en nuestra dirección, la población total debería alcanzar un millón.